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Abstract. Starting from the study of the low-energy and high-energy behaviors of the QCD three-point
functions 〈VAP 〉, 〈V VP 〉 and 〈AAP 〉, several O(p6) low-energy constants of the chiral Lagrangian are eval-
uated within the framework of the lowest meson dominance (LMD) approximation to the large-NC limit of
QCD. In certain cases, values that differ substantially from estimates based on a resonance Lagrangian are
obtained. It is pointed out that the differences arise through the fact that QCD short-distance constraints
are in general not correctly taken into account in the approaches using resonance Lagrangians. We discuss
the implications of our results for the O(p6) counterterm contributions to the vector form factor of the
pion and to the decay π → eνeγ, and for the pion–photon–photon transition form factor.

1 Introduction

In the chiral limit, the lightest pseudoscalar states of the
hadronic spectrum become the octet of massless Gold-
stone bosons resulting from the spontaneous breaking of
the chiral SU(3)L ×SU(3)R global symmetry of the QCD
Lagrangian towards its diagonal subgroup SU(3)V of vec-
tor symmetries. This well-known fact [1,2] allows one to
describe the interactions of the light pseudoscalar mesons
at low energies in terms of an effective Lagrangian [3,4].
The latter involves the pseudoscalar fields, described by a
unitary matrix U(x), and transforming under a nonlinear
representation of the chiral symmetry group, as well as
the sources, vµ(x), aµ(x), of the light-quark vector and
axial currents, and s(x), p(x), of the scalar and pseu-
doscalar densities of QCD [4]. Matrix elements of these
currents between pseudoscalar states, or scattering ampli-
tudes involving these light states only, can be computed
in a systematic way in the low-energy theory as long as all
momentum transfers p2 are sufficiently small, p2 � Λ2H ,
where ΛH ∼ 1GeV is the typical scale at which the non-
Goldstone bound states of QCD are formed. Since the
(running) light-quark massesmq(µ) are also small as com-
pared to this scale, mu,d,s(ΛH) � ΛH , the effective La-
grangian Leff can be organized as an expansion in powers
of derivatives of the field U(x) and powers of the light-
quark masses,

Leff =
∑
k,l

L(k,l),
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with

L(k,l) ∼
(
p

ΛH

)k (
mq

ΛH

)l

. (1.1)

The presently available studies on the structure of the
low-energy effective Lagrangian involve, beyond the lowest
order terms, the pieces L(4,0), L(2,1) and L(0,2) [4], L(6,0)
and L(4,1) [5,6], L(2,2) and L(0,3) [7,5,6], as well as L(0,4)
[8]. The structure of each L(k,l) is entirely fixed by the
chiral symmetry properties of QCD [9], but involves co-
efficients, the so called low-energy constants1, which are
not determined from symmetry requirements alone. The
predictive power of the effective theory therefore hinges to
quite some extent on the knowledge of these low-energy
constants. At O(p4), the values of most of the low-energy
constants were extracted from data. The proliferation of
low-energy constants at O(p6) makes such an approach
unrealistic.

On the other hand, it is a general property that these
low-energy constants correspond to the coefficients of the
Taylor expansion, with respect to the momenta, of some
QCD correlation functions, once the singularities (poles
and discontinuities) associated with the contributions of
low-momentum pseudoscalar intermediate states have
been subtracted. The characteristic feature of the Green’s
functions that are actually involved is that they are or-
der parameters of the spontaneous breaking of chiral sym-

1 Some of the counterterms involving the external sources
only and no pseudoscalar fields actually rather correspond to
“high-energy constants”, since they describe the (perturbative)
short-distance ambiguities of some QCD correlators. At O(p4),
this concerns the constants H1 and H2 of [4]. We exclude this
type of counterterms from the present discussion
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metry. Thus, they do not receive contributions from per-
turbative QCD at large momentum transfers, but rather
exhibit a smooth behavior at short distances. The low-
energy constants are thus expected to be sensitive to the
physics in the intermediate energy region; that is, to the
spectrum of mesonic resonances in the mass region around
the hadronic scale ΛH . This basic observation underlies, in
some way or another, most attempts to estimate the val-
ues of the low-energy constants from resonance data (for
an introduction to the vast bibliography on this subject,
we refer the reader to the review articles [10–12]).

It has become customary to describe the effects of
resonance states within a Lagrangian framework, by in-
troducing, besides the Goldstone boson field U(x), addi-
tional local fields associated with the meson states. While
there exists a systematic way [13] to construct fields which
have the appropriate transformation properties under chi-
ral transformations and invariant Lagrangians, there is
however no restriction from chiral symmetry as to the
number of fields and the order of derivatives thereof in-
volved in the terms which describe the interaction among
resonances or between the resonances and the Goldstone
bosons. In addition, the construction of [13] leaves open
the question of the choice of the Lorentz group represen-
tation for the field describing a meson state of a given
spin. This lack of restrictions has led to many proposals
concerning a Lagrangian description of interacting Gold-
stone bosons and mesons (the literature on this subject
can be traced back from several reviews [14–16] and from
the articles of [17–19]). It has been pointed out in [20]
that restrictions actually can be introduced, via the QCD
short-distance properties of the relevant Green’s functions
or form factors, and by requiring that these properties are
satisfied by the same objects constructed with the help of
the Lagrangian involving resonances. This aspect has been
taken into account in a rather systematic manner at the
level of the O(p4) counterterms [20]. Although resonance
estimates have been given for several O(p6) low-energy
constants, the importance of implementing the appropri-
ate QCD short-distance constraints has not always been
stressed. The purpose of the present study is precisely to
address this aspect.

Although quite practical and useful, since it guaran-
tees that some general properties (locality, analyticity) of
quantum field theories are correctly taken into account,
a Lagrangian formalism is not absolutely necessary in or-
der to estimate the contributions of the QCD resonance
states to the low-energy constants. In this article, we shall
in fact consider a different approach, working directly with
the appropriate Green’s functions. We shall however retain
the general features and assumptions that underlie the La-
grangian approach, and that we briefly recall. First, one
usually considers zero-width resonances, and takes into ac-
count the contributions from one-resonance states, which
produce only poles in the corresponding correlation func-
tions. There exists a well-defined framework where this
kind of restrictions arises in a natural way [21], namely the
large-NC limit of QCD [22]. On the other hand, working in
this limit still requires one to consider, in each channel, an

infinite number of resonances, with masses and coupling
constants adjusted such as to reproduce the QCD pertur-
bative continuum at high momentum transfers. Of course,
such a point of view is rather ambitious, since it amounts
to solving QCD in the large-NC limit, a reputedly difficult
task. We shall adopt a more modest attitude, assuming
that in each channel a few lowest-lying resonances give
already the main contribution (approaches involving an
infinite number of zero-width resonances, with various ad-
ditional assumptions about their spacing, decay constants,
etc., can be found in [23–25]). The number of resonances
to be considered in each channel will be taken as the min-
imal (finite) number necessary to satisfy the requirements
set by, say, the leading QCD short-distance constraints for
the Green’s functions under consideration, and possibly
other constraints that one may wish to impose. This min-
imal hadronic ansatz (MHA) approximation may be well
justified in the case of Green’s functions which are order
parameters, free of perturbative contributions (for Green’s
functions which are not order parameters, the QCD con-
tinuum contribution has to be included as well; see [26,
27]). In fact, in many cases, this minimal hadronic ansatz
can be reduced to retaining, in each channel, a single res-
onance. At the O(p4) level, this lowest meson dominance
(LMD) approximation to large-NC QCD has been tested
successfully in several instances [17,18,20,26]. As we shall
see in the examples treated in the present work, depend-
ing on the constraints one wishes to implement on the
Green’s functions under consideration, this simplest LMD
approximation may however not always be sufficient. A
second feature common to the Lagrangian and to the LMD
or MHA approximations is the fact that the estimates of
the low-energy constants do not reproduce their scale de-
pendence. The latter, which comes from Goldstone boson
loop contributions to the relevant Green’s functions, is a
next-to-leading order effect in the 1/NC expansion, and
lies thus beyond the approximation considered. We shall
adopt the usual point of view that the estimates furnished
by this type of approach corresponds to the values of the
low-energy constants at the typical scale, say ΛH , set by
these resonance states [18].

Approaches which do not rely on a resonance
Lagrangian have been used before at the O(p6) level for
two-point functions [28–30]. In these studies, the relevant
low-energy constants have often been expressed through
(superconvergent) dispersion integrals of the correspond-
ing spectral densities, which were then evaluated using
available data. It seems difficult to follow similar lines in
the case of three-point or higher Green’s functions. Not
only are their analyticity properties far more complicated,
but the corresponding spectral densities are in general not
experimental observables. Studies of three-point functions
similar to the lines we follow here can be found in [31–33],
although the discussion of their short-distance properties
is less complete than the one presented below.

In this article, we shall concentrate on a certain sub-
set of O(p6) low-energy constants contributing to L(4,1)
and L(6,0), and corresponding to the three-point functions
〈VAP 〉, 〈V VP 〉 and 〈AAP 〉 (see the beginning of Sect. 2
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for the precise definitions). There are several reasons for
this specific choice. First, these correlators have been con-
sidered before in the literature, so that quite some in-
formation concerning them is already available. Second,
although the approach that we shall follow here is, in
principle, applicable to other correlation functions as well,
these Green’s functions have a certain degree of simplic-
ity, which makes them particularly valuable for illustrating
our point of view. Finally, these Greens functions also play
a role in the evaluation of some of the counterterms that
arise in the calculation of electromagnetic contributions
to the pseudoscalar masses [34] or of radiative corrections
to semileptonic decays of the pseudoscalar mesons [35,36]
within an effective Lagrangian framework [37].

The remaining material of the present article is orga-
nized as follows. In Sect. 2, we define the relevant QCD
Green’s function and study their long-distance properties
in the chiral limit and at leading order in the 1/NC expan-
sion. In particular, we identify the low-energy constants
related to these correlators. Section 3 is devoted to an ex-
tensive discussion of the leading short-distance properties
of these Green’s functions within the same framework. In
Sect. 4, we construct some simple ansätze, in terms of a
finite number of narrow resonances, which correctly repro-
duce the short-distance constraints. These are used to de-
termine the corresponding low-energy constants in Sect. 5.
We then compare our results with those obtained from a
Lagrangian involving resonances [38] which has often been
employed in the literature to estimate the low-energy con-
stants at order p6 (Sect. 6), and point out that this reso-
nance Lagrangian does not correctly incorporate the nec-
essary short-distance properties (Sect. 7). In Sect. 8, we
present several applications. Conclusions and additional
discussions can be found in Sect. 9. AppendixA contains
some technical details relevant for the discussion in Sect. 4
and AppendixB gives the expression of the resonance La-
grangian of [38].

2 Long-distance properties
from chiral symmetry

We consider, in the three flavor chiral limit, the momen-
tum space QCD three-point functions

(ΠVAP )abcµν (p, q) =
∫

d4x
∫

d4yei(p·x+q·y)

× 〈0|T{V a
µ (x)Ab

ν(y)P
c(0)}|0〉,

(ΠV V P )abcµν (p, q) =
∫

d4x
∫

d4yei(p·x+q·y)

× 〈0|T{V a
µ (x)V b

ν (y)P c(0)}|0〉,
(ΠAAP )abcµν (p, q) =

∫
d4x

∫
d4yei(p·x+q·y)

× 〈0|T{Aa
µ(x)A

b
ν(y)P

c(0)}|0〉, (2.1)

involving the octet vector and axial currents,

V a
µ (x) =

(
ψ̄γµ

λa

2
ψ

)
(x),

Aa
µ(x) =

(
ψ̄γµγ5

λa

2
ψ

)
(x),

as well as the octet pseudoscalar density

P a(x) =
(
ψ̄iγ5

λa

2
ψ

)
(x).

These three-point functions satisfy the following chiral
Ward identities,

pµ(ΠVAP )abcµν (p, q) = 〈ψψ〉0fabc
[
qν
q2

− (p+ q)ν
(p+ q)2

]
,

qν(ΠVAP )abcµν (p, q) = 〈ψψ〉0fabc (p+ q)µ
(p+ q)2

,

pµ(ΠV V P )abcµν (p, q) = 0, qν(ΠV V P )abcµν (p, q) = 0,

pµ(ΠAAP )abcµν (p, q) = 0, qν(ΠAAP )abcµν (p, q) = 0, (2.2)

where 〈ψψ〉0 denotes the single flavor bilinear quark con-
densate in the chiral limit. The general solution of these
Ward identities, taking into account the invariances of
QCD under SU(3)V , parity and time reversal transfor-
mations (the latter being responsible for the absence of
structures of the type dabc in the case ofΠVAP , or of struc-
tures of the type fabc in the cases of ΠV V P and ΠAAP ),
read

(ΠVAP )abcµν (p, q)

= fabc

{
〈ψψ〉0

[
(p+ 2q)µqν
q2(p+ q)2

− ηµν
(p+ q)2

]

+Pµν(p, q)F(p2, q2, (p+ q)2)

+Qµν(p, q)G(p2, q2, (p+ q)2)

}
,

(ΠV V P )abcµν (p, q) = εµναβp
αqβdabcHV (p2, q2, (p+ q)2),

(ΠAAP )abcµν (p, q) = εµναβp
αqβdabcHA(p2, q2, (p+ q)2)

. (2.3)

Here, ηµν denotes the metric tensor in flat Minkowski
space with signature (+,−,−,−) and we use the conven-
tions ε0123 = 1 for the totally antisymmetric tensor εµνρσ
and γ5 = iγ0γ1γ2γ3. The transverse tensors Pµν and Qµν

are defined by

Pµν(p, q) = qµpν − (p · q)ηµν ,
Qµν(p, q) = p2qµqν + q2pµpν − (p · q)pµqν − p2q2ηµν .

Due to Bose–Einstein symmetry, the invariant functions
HV,A have the property

HV,A(p2, q2, (p+ q)2) = HV,A(q2, p2, (p+ q)2). (2.4)

The behavior of these invariant functions at small mo-
mentum transfers is constrained by the presence of singu-
larities arising from Goldstone boson intermediate states.
Here we are interested in the limit where the number of
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colors NC becomes infinite. In this limit, the contributions
from one-particle intermediate states dominate, so that at
low energies we only need to keep the corresponding Gold-
stone boson poles and the polynomial terms involving the
counterterms. In the even intrinsic parity case, we use the
basis of [6] for the O(p6) counterterms, and we obtain

FChPT(p2, q2, (p+ q)2) =
4〈ψψ〉0

F 2
0 (p+ q)2

×
[
L9 + L10 +

(
C78 − 5

2
C88 − C89 + 3C90

)
p2

+
(
C78 − 2C87 +

1
2
C88

)
q2

+
(
C78 + 4C82 − 1

2
C88

)
(p+ q)2

]
+ · · · ,

GChPT(p2, q2, (p+ q)2) =
4〈ψψ〉0

F 2
0 q

2(p+ q)2

×[L9 + 2(−C88 + C90)p2 + (2C78 − C89 + C90)q2

−2C90(p+ q)2] + · · · , (2.5)

where the ellipses stand for higher order contributions.
For the two correlators of odd intrinsic parity, we use the
counterterm Lagrangian of [5], in terms of which we find

HChPT
V (p2, q2, (p+ q)2) = − 〈ψψ〉0

F 2
0 (p+ q)2

×
[

− NC

8π2
+ (4A2 − 16A3)(p2 + q2)

+(−4A2 + 8A3 + 16A4)(p+ q)2
]

+ · · · ,

HChPT
A (p2, q2, (p+ q)2) = − 〈ψψ〉0

F 2
0 (p+ q)2

×
[

− NC

24π2
+ (4A11 + 4A23 − 16A24)(p2 + q2)

+(−12A11 − 16A17 − 4A23 + 8A24 + 16A25)

×(p+ q)2
]

+ · · · . (2.6)

We have thus identified the set of low-energy constants
that describe the long-distance behavior of the 〈VAP 〉,
〈V VP 〉 and 〈AAP 〉 three-point functions.

3 Short-distance analysis

We next study the properties of the 〈VAP 〉, 〈V VP 〉 and
〈AAP 〉 correlators at short distances. These will be con-
ditioned by the fact that the three Green’s functions un-
der consideration are order parameters of chiral symmetry.
Therefore, they vanish to all orders in perturbative QCD
in the chiral limit, so that their behavior at short distances
is smoother than expected from naive power counting ar-
guments. Two limits are of interest. In the first case, the

two momenta become simultaneously large, which in po-
sition space describes the situation where the space-time
arguments of the three operators tend towards the same
point at the same rate. Our analysis will be restricted to
the leading terms2, and the expressions below hold up to
corrections of order O(αs). We obtain

lim
λ→∞

(ΠVAP )abcµν (λp, λq) =
〈ψψ〉0
λ2

fabc
1

p2q2(p+ q)2

×
{
p2(p+ 2q)µqν − ηµνp

2q2

+
1
2
[p2 − q2 − (p+ q)2]Pµν −Qµν

}
+ O

(
1
λ4

)
,

lim
λ→∞

(ΠV V P )abcµν (λp, λq) = −〈ψψ〉0
2λ2

dabcεµναβp
αqβ

×q
2 + p2 + (p+ q)2

p2q2(p+ q)2
+ O

(
1
λ4

)
,

lim
λ→∞

(ΠAAP )abcµν (λp, λq) = −〈ψψ〉0
2λ2

dabcεµναβp
αqβ

×q
2 + p2 − (p+ q)2

p2q2(p+ q)2
+ O

(
1
λ4

)
. (3.1)

One concludes that

lim
λ→∞

F((λp)2, (λq)2, (λp+ λq)2)

=
1

2λ4
〈ψψ〉0 p

2 − q2 − (p+ q)2

p2q2(p+ q)2
+ O

(
1
λ6

)
, (3.2)

lim
λ→∞

G((λp)2, (λq)2, (λp+ λq)2)

= − 1
λ6

〈ψψ〉0
p2q2(p+ q)2

+ O
(

1
λ8

)
, (3.3)

and

lim
λ→∞

HV,A((λp)2, (λq)2, (λp+ λq)2)

= − 1
2λ4

〈ψψ〉0 p
2 + q2 ± (p+ q)2

p2q2(p+ q)2
+ O

(
1
λ6

)
. (3.4)

Notice that since the 〈ψψ〉0 condensate and the pseu-
doscalar density P a(x) have the same anomalous dimen-
sions, the leading short-distance behavior exhibited in
these expressions is canonical, the corresponding Wilson
coefficients have no anomalous dimensions.

The second situation of interest corresponds to the
case where the relative distance between only two of the
three operators involved becomes small. It so happens that
the corresponding behaviors in momentum space involve,
apart from the correlator 〈AP 〉 which, in the chiral limit,
is saturated by the single-pion intermediate state,∫

d4xeip·x〈0|T{Aa
µ(x)P

b(0)}|0〉 = δab〈ψψ〉0 pµ
p2
,

2 In the case of the 〈VAP 〉 correlator, the subleading term in
the short-distance expansion, involving the mixed condensate,
can be found in [33]
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the two-point function 〈V T 〉 of the vector current and the
antisymmetric tensor density,

δab(ΠV T )µρσ(p)

=
∫

d4xeip·x〈0|T
{
V a
µ (x)

(
ψσρσ

λb

2
ψ

)
(0)

}
|0〉,

with σρσ = (i/2)[γρ, γσ] (the similar correlator between
the axial current and the tensor density vanishes as a con-
sequence of invariance under charge conjugation). Conser-
vation of the vector current and invariance under parity
then give

(ΠV T )µρσ(p) = (pρηµσ − pσηµρ)ΠV T (p2).

The leading short-distance behavior of this two-point
function reads (see also [39])

lim
λ→∞

ΠV T ((λp)2) = − 1
λ2

〈ψψ〉0
p2

+ O
(

1
λ4

)
. (3.5)

For the 〈VAP 〉 correlator, we then find

lim
λ→∞

(ΠVAP )abcµν (λp, q − λp) (3.6)

= − 1
λ
fabc〈ψψ〉0 pµqν + pνqµ − (p · q)ηµν

p2q2
+ O

(
1
λ2

)
,

lim
λ→∞

(ΠVAP )abcµν (λp, q) =
1
λ
fabc〈ψψ〉0 pµqν

p2q2
+ O

(
1
λ2

)
,

(3.7)

and

lim
λ→∞

(ΠVAP )abcµν (p, λq) (3.8)

=
1
λ
fabc

pνqµ − (p · q)ηµν
q2

ΠV T (p2) + O
(

1
λ2

)
.

For the 〈V V P 〉 correlator we obtain the results

lim
λ→∞

(ΠV V P )abcµν (λp, q − λp)

= − 1
λ
dabc〈ψψ〉0εµνρσpρqσ 1

p2q2
+ O

(
1
λ2

)
, (3.9)

lim
λ→∞

(ΠV V P )abcµν (λp, q)

=
1
λ
dabcεµνρσ

pρqσ

p2
ΠV T (q2) + O

(
1
λ2

)
, (3.10)

and for the 〈AAP 〉 correlator,

lim
λ→∞

(ΠAAP )abcµν (λp, q − λp)

= − 1
λ
dabc〈ψψ〉0εµνρσpρqσ 1

p2q2
+ O

(
1
λ2

)
, (3.11)

lim
λ→∞

(ΠAAP )abcµν (λp, q) = O
(

1
λ2

)
. (3.12)

In terms of the invariant functions F and G, the constraint
(3.6) yields

lim
λ→∞

F((λp)2, (q − λp)2, q2)

=
〈ψψ〉0
λ2p2

[
F (0)(q2) +

1
λ

p · q
p2

F (1)(q2) + O
(

1
λ2

)]
,

lim
λ→∞

G((λp)2, (q − λp)2, q2) (3.13)

=
〈ψψ〉0
(λ2p2)2

[
G(0)(q2) +

1
λ

p · q
p2

G(1)(q2) + O
(

1
λ2

)]
,

together with

F (0)(q2) − G(0)(q2) =
1
q2
,

F (1)(q2) − G(1)(q2) + G(0)(q2) =
2
q2
. (3.14)

Finally, the following properties

lim
λ→∞

F((λp)2, q2, (q + λp)2) = O
(

1
λ3

)
,

lim
λ→∞

G((λp)2, q2, (q + λp)2) = O
(

1
λ4

)
, (3.15)

and

lim
λ→∞

F(p2, (λq)2, (p+ λq)2)

=
1
λ2

1
q2
ΠV T (p2) + O

(
1
λ3

)
,

lim
λ→∞

G(p2, (λq)2, (p+ λq)2) = O
(

1
λ4

)
, (3.16)

must also be satisfied. For the invariant functions HV and
HA we obtain the constraints

lim
λ→∞

HV,A((λp)2, (q − λp)2, q2)

= − 1
λ2

〈ψψ〉0 1
p2q2

+ O
(

1
λ3

)
, (3.17)

lim
λ→∞

HV ((λp)2, q2, (q + λp)2)

=
1
λ2

1
p2
ΠV T (q2) + O

(
1
λ3

)
, (3.18)

lim
λ→∞

HA((λp)2, q2, (q + λp)2) = O
(

1
λ3

)
. (3.19)

4 The intermediate energy region

In this section, we shall construct representations of the
invariant functions which describe the correlators 〈VAP 〉,
〈V VP 〉, 〈AAP 〉 and 〈V T 〉 in the intermediate energy re-
gion, dominated by the resonances, and which reproduce
the short-distance constraints studied in the preceding sec-
tion. Finding the general structure of the invariant func-
tions F , G and HV,A is of course far beyond our present
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possibilities. As discussed in the introduction, we shall
therefore work in the framework of the large-NC approx-
imation to QCD and assume, in addition, that already
a finite number of resonances will give a satisfactory de-
scription of these correlators.

We first consider the case where only a single reso-
nance is retained in each channel, assuming that in the
pseudoscalar one only the massless Goldstone bosons need
to be kept. The corresponding lowest meson dominance
(LMD) ansätze for the invariant functions are constructed
such that the resulting expressions agree with the short-
distance constraints (3.2)–(3.4). This is rather straightfor-
ward, and in the case of the 〈VAP 〉 correlator, the result
reads [33]

FLMD(p2, q2, (p+ q)2)

=
〈ψψ〉0

2
p2 − q2 − (p+ q)2 + 2a

(p2 −M2
V )(q2 −M2

A)(p+ q)2
,

GLMD(p2, q2, (p+ q)2)

= 〈ψψ〉0 −q2 + b

(p2 −M2
V )(q2 −M2

A)q2(p+ q)2
. (4.1)

The constants a and b in (4.1) can be determined as fol-
lows. As shown in [33], one can relate the 〈V A|π〉 ver-
tex function ΓV A (for the definitions and a discussion of
some properties of the vertex functions associated to the
three-point functions under study, we refer the reader to
AppendixA) to the two-point correlator 〈V V –AA〉 via a
low-energy theorem. From the two Weinberg sum rules
[40] one obtains in this way the relation

a− b = −(M2
V +M2

A). (4.2)

The constant b can be fixed by requiring that the vector
form factor of the pion Fπ

V (q2), defined by

〈πa(p′)|V b
µ (0)|πc(p)〉 = ifabc(p′ + p)µFπ

V (q2),

q = p− p′, (4.3)

satisfies an unsubtracted dispersion relation [20] (there are
theoretical arguments [41,42] in favor of a 1/q2 fall-off of
this form factor for large momentum transfer). Since

Fπ
V (q2) ≡ 1 +

q2

2〈ψψ〉0
lim

(q−p)2→0
lim
p2→0

(q − p)2p2

×G(q2, (q − p)2, p2),

we obtain with the function GLMD from (4.1) the result

Fπ,LMD
V (q2) = 1 − b

2M2
A

q2

q2 −M2
V

, (4.4)

and thus
b = 2M2

A. (4.5)

Combining (4.2) and (4.5) then gives

a = M2
A −M2

V . (4.6)

We note that the argument given in [33] that the same
result for the constant b can also be obtained by enforcing
the correct short-distance behavior of the 〈V P |π〉 vertex
function ΓV P is not correct. In Appendix A we sketch the
derivation of the operator product expansion of this vertex
function, with the result given in (A.6). The LMD ansatz
will reproduce the subleading term in the OPE provided
b = 4M2

A/3, which implies with (4.2) a = −M2
V +M2

A/3.
Thus, with the LMD ansatz for the invariant function G
from (4.1) it is not possible to reproduce at the same time
the requirements from the asymptotic behavior of the form
factor Fπ

V (q2) and from the subleading terms in the OPE
for the 〈V P |π〉 vertex function. The subleading term of
the OPE of 〈V A|π〉 is correctly reproduced if (4.2) holds.
In what follows, we shall understand that the LMD ap-
proximation for the 〈VAP 〉 correlator corresponds to the
ansatz (4.1) together with the choice b = 2M2

A.
For the 〈V T 〉 two-point functions, only JPC = 1−−

vector mesons contribute. In the LMD approximation, the
leading short-distance behavior then fixes everything but
the mass of the lowest vector resonance,

ΠLMD
V T (p2) = −〈ψψ〉0 1

p2 −M2
V

. (4.7)

It is quite remarkable that with this simple ansatz all
the remaining leading short-distance constraints explicited
in the previous section are met. In particular, for the quan-
tities introduced in (3.13) we obtain

F (0),LMD(q2) = 0, F (1),LMD(q2) =
1
q2
,

G(0),LMD(q2) = − 1
q2
, G(1),LMD(q2) = − 2

q2
,

which satisfy (3.14). Note, however, that the LMD ansätze
for F and G in (4.1) do not correctly reproduce the sub-
leading terms in the OPE for the correlator 〈VAP 〉 given
in [33].

The LMD ansatz for the invariant functions HV,A

reads3

HLMD
V (p2, q2, (p+ q)2)

= −〈ψψ〉0
2

p2 + q2 + (p+ q)2 − cV
(p2 −M2

V )(q2 −M2
V )(p+ q)2

,

cV =
NC

4π2
M4

V

F 2
0
,

HLMD
A (p2, q2, (p+ q)2)

= −〈ψψ〉0
2

p2 + q2 − (p+ q)2 − cA
(p2 −M2

A)(q2 −M2
A)(p+ q)2

,

cA =
NC

12π2
M4

A

F 2
0
, (4.8)

where cV,A are fixed by the Wess–Zumino–Witten anomaly
[44] term. Again, these simple ansätze fulfill all the remain-
ing leading short-distance requirements worked out in the

3 The LMD ansatz for the 〈V VP 〉 three-point function was
given in [32,43]
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preceding section. We note that for the vertex functions
ΓV V and ΓAA also the subleading terms in the OPE in
(A.6) are reproduced by these ansätze.

As already pointed out, it is sometimes necessary to
generalize the ansätze for the invariant functions given
above by including more than one resonance in each chan-
nel. This might be due to some additional constraints that
are imposed on the Green’s functions or in order to better
reproduce experimental data involving resonances, as was
argued in [32]. If we include, for instance, one additional
vector resonance, the expressions for the invariant func-
tions F ,G, ΠV T and HV read as follows (HA remains, of
course, unchanged)

FLMD+V (p2, q2, (p+ q)2)

=
〈ψψ〉0

2
p2

[
p2 − q2 − (p+ q)2

]
+ PF (p2, q2, (p+ q)2)

(p2 −M2
V1

)(p2 −M2
V2

)(q2 −M2
A)(p+ q)2

,

GLMD+V (p2, q2, (p+ q)2)

= 〈ψψ〉0 −p2q2 + PG(p2, q2, (p+ q)2)
(p2 −M2

V1
)(p2 −M2

V2
)(q2 −M2

A)q2(p+ q)2
,

ΠLMD+V
V T (p2) = −〈ψψ〉0 p2 + cV T

(p2 −M2
V1

)(p2 −M2
V2

)
,

HLMD+V
V (p2, q2, (p+ q)2) = −〈ψψ〉0

2

× p2q2
[
p2 + q2 + (p+ q)2

]
+ PV

H (p2, q2, (p+ q)2)
(p2 −M2

V1
)(p2 −M2

V2
)(q2 −M2

V1
)(q2 −M2

V2
)(p+ q)2

,

(4.9)

where

PF (p2, q2, (p+ q)2) = f1p
2 + f2q

2 + f3(p+ q)2 + f4,

PG(p2, q2, (p+ q)2) = g1p
2 + g2q

2 + g3(p+ q)2 + g4,

PV
H (p2, q2, (p+ q)2) = h1(p2 + q2)2 + h2p

2q2

+h3(p2 + q2)(p+ q)2 + h4(p+ q)4 + h5(p2 + q2)
+h6(p+ q)2 + h7.

The coefficients that appear in the polynomials PF , PG

and PV
H have to fulfill the following relations

f2 + f3 = −2cV T ,

h1 + h3 + h4 = 2cV T , (4.10)

in order to reproduce all short-distance constraints from
the operator product expansion given in the previous sec-
tion. Furthermore, the Wess–Zumino–Witten anomaly de-
termines

h7 = −NC

4π2
M4

V1
M4

V2

F 2
0

.

Using the low-energy theorem that relates ΓV A to 〈V V −
AA〉 one obtains, from the LMD+V ansatz for the latter
correlator [45], the relations

f1 + f2 = 2
(
g1 + g2 −M2

V1
−M2

V2
−M2

A

)
,

f4 = 2
(
g4 +M2

V1
M2

V2
+M2

A(M2
V1

+M2
V2

)

− 4παs〈ψψ〉20
F 2
0

)
. (4.11)

The first of these conditions also guarantees that the next-
to-leading short-distance behavior of ΓV A is correctly re-
produced. The vector form factor of the pion now reads

Fπ,LMD+V
V (q2) = 1 − q2

2M2
A

g1q
2 + g4

(q2 −M2
V1

)(q2 −M2
V2

)
. (4.12)

Requiring that it behaves like 1/q2 for large q2, leads to
the relation

g1 = 2M2
A. (4.13)

On the other hand, in order to reproduce the subleading
terms in the OPE for ΓV P , (A.6), with the LMD+V ansatz
for G yields a constraint which is independent from the
previous one,

g1 + g3 =
4
3
M2

A. (4.14)

Combining this equation with (4.13), we obtain the result

g3 = −2
3
M2

A.

Note that in contrast to the LMD case above, we can si-
multaneously fulfill the requirements from the asymptotic
behavior of the form factor Fπ

V (q2) and from the sublead-
ing terms in the OPE for the ΓV P vertex functions.

Finally we note that the subleading terms in the OPE
for the 〈V V |π〉 vertex function ΓV V in (A.6) are repro-
duced by the LMD+V ansatz for HV without leading to
further constraints on the coefficients hi.

Let us briefly mention the ansatz for HV with one
additional pseudoscalar resonance, discussed in [32],

HLMD+P
V (p2, q2, (p+ q)2) = −〈ψψ〉0

2
(4.15)

× (p+ q)2
[
p2 + q2 + (p+ q)2

]
+ PP

H (p2, q2, (p+ q)2)
(p2 −M2

V )(q2 −M2
V )((p+ q)2 −M2

P )(p+ q)2
,

where

PP
H (p2, q2, (p+ q)2) = ĥ1(p2 + q2) + ĥ2(p+ q)2 + ĥ3.

The OPE leads to the condition

ĥ1 = −M2
P , (4.16)

and the Wess–Zumino–Witten anomaly yields

ĥ3 =
NC

4π2
M4

VM
2
P

F 2
0

.

In contrast to the LMD case, the coefficients that ap-
pear in the invariant functions are no longer fixed unam-
biguously by the leading terms in the OPE. Here we have
considered additional restrictions arising from the next-
to-leading short-distance behavior of the 〈V A|π〉, 〈V P |π〉



666 M. Knecht, A. Nyffeler: Resonance estimates of O(p6) low-energy constants

and 〈V V |π〉 vertex functions. Further information may be
gained from the study of vertex functions like 〈V P |a1〉,
〈V V |ρ〉, etc. We shall not pursue this interesting line of
thought here. Other sources of additional constraints
might also be invoked, either from low-energy physics,
from subleading terms in the OPE of the three-point func-
tions4 or from processes involving resonances. We shall
illustrate this point below.

5 Determination of low-energy constants

In this section, we shall use the ansätze of the previous
section in order to obtain an evaluation of the low-energy
constants involved in the chiral expansion of the three cor-
relators under study. This is done upon performing the
low-energy expansion of the invariant functions FLMD,
GLMD and HLMD

V,A and by subsequently matching it with
the chiral expressions (2.5) and (2.6).

We start with the sector of even intrinsic parity, i.e.
with the 〈VAP 〉 correlator. For small momentum trans-
fers, we can expand the resonance propagators

1
p2 −M2

R
= − 1

M2
R

[
1 + O

(
p2

M2
R

)]
, (5.1)

and obtain (in these expressions, we have taken b = 2M2
A,

a = M2
A −M2

V ; see the discussion after (4.1)),

FLMD(p2, q2, (p+ q)2) =
〈ψψ〉0

(p+ q)2

×
[

1
M2

V

− 1
M2

A

+
p2

M2
VM

2
A

(
M2

A

M2
V

− 1
2

)

+
q2

M2
VM

2
A

(
1
2

− M2
V

M2
A

)
− 1

2
(p+ q)2

M2
VM

2
A

+ O(p4)
]
,

GLMD(p2, q2, (p+ q)2) =
〈ψψ〉0

q2(p+ q)2

×
[

2
M2

V

+ p2
(

2
M4

V

)
+ q2

(
1

M2
VM

2
A

)
+ O(p4)

]
,

where O(p4) includes all possible higher order polynomials
in p2, q2, (p + q)2. Comparison with the expressions (2.5)
from ChPT yields the following solution (treating SU(2)
and SU(3) together)

LLMD
9 = −1

2
lLMD
6 =

1
2
F 2
0

M2
V

,

LLMD
10 = lLMD

5 = −1
4
F 2
0

M2
V

− 1
4
F 2
0

M2
A

, (5.2)

4 Actually, the addition of a single vector or pseudoscalar
resonance is still not sufficient in order to reproduce the next-
to-leading short-distance behavior of 〈VAP 〉 as given by (46)
of [33]

and

CLMD
78 = cLMD

44 =
3
8
F 2
0

M4
V

+
3
8

F 2
0

M2
VM

2
A

,

CLMD
82 = cLMD

47 = −1
8
F 2
0

M4
V

− 1
8

F 2
0

M2
VM

2
A

,

CLMD
87 = cLMD

50 =
1
8
F 2
0

M4
V

+
1
8

F 2
0

M2
VM

2
A

+
1
8
F 2
0

M4
A

,

CLMD
88 = cLMD

51 = −1
4
F 2
0

M4
V

,

CLMD
89 = cLMD

52 =
3
4
F 2
0

M4
V

+
1
2

F 2
0

M2
VM

2
A

,

CLMD
90 = cLMD

53 = 0. (5.3)

The results for L9 and L10 agree with those obtained in
[18,20] after employing the two Weinberg sum rules [40]
and using, in addition, the relation FVGV = F 2

0 which
follows from the assumption that the vector form factor
of the pion Fπ

V (q2) satisfies an unsubtracted dispersion
relation [20].

Going through the same steps for the two correlators
〈V VP 〉 and 〈AAP 〉, we obtain the small momentum ex-
pansions

HLMD
V (p2, q2, (p+ q)2) =

〈ψψ〉0
(p+ q)2

×
[
NC

8π2F 2
0

− p2 + q2

M4
V

(
1
2

− NC

8π2
M2

V

F 2
0

)
− (p+ q)2

M4
V

+O(p4)

]
,

HLMD
A (p2, q2, (p+ q)2) =

〈ψψ〉0
(p+ q)2

×
[

NC

24π2F 2
0

− p2 + q2

M4
A

(
1
2

− NC

24π2
M2

A

F 2
0

)
+

(p+ q)2

M4
A

+O(p4)

]
,

from which we infer the following equations for some of the
O(p6) low-energy constants Ai of [5] in the odd intrinsic
parity sector, see (2.6),

ALMD
2 − 4ALMD

3 =
F 2
0

8M4
V

− NC

32π2
1
M2

V

,

ALMD
2 − 2ALMD

3 − 4ALMD
4 = − F 2

0

8M4
V

,

ALMD
11 +ALMD

23 − 4ALMD
24 =

F 2
0

8M4
A

− NC

96π2
1
M2

A

, (5.4)

3ALMD
11 + 4ALMD

17 +ALMD
23 − 2ALMD

24 − 4ALMD
25 =

F 2
0

8M4
A

.

The numerical values that follow from these expres-
sions for the low-energy constants Ci and Ai are discussed
in the next section.
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6 Comparison with the
resonance Lagrangian approach

In this section, we wish to compare the preceding deter-
mination of the low-energy constants with the approach
which uses a Lagrangian with explicit resonance degrees
of freedom. For definiteness, we use the resonance La-
grangian given in [38] which has often been employed in
the literature to estimate the low-energy constants at or-
der p6. In this Lagrangian a vector-field representation is
used for the vector and axial-vector resonances. For conve-
nience, we have written down this Lagrangian in Appendix
B. Note that no pseudoscalar resonances appear in this La-
grangian. Furthermore, as stressed in [20], one has to add
local terms from L4, 5 with fixed coefficients Lresi in order
to correctly reproduce the QCD short-distance behavior
of certain Green’s functions. We shall come back to this
point below.

The calculation of the 〈VAP 〉, 〈V VP 〉 and 〈AAP 〉
three-point functions with the resonance Lagrangian
yields again a result in agreement with the general solu-
tion of the Ward identities with the following expressions
for the invariant functions (the coupling βV is sometimes
denoted by fχ; see e.g. [46])

F res(p2, q2, (p+ q)2) =
〈ψψ〉0

F 2
0 (p+ q)2

×
[
4Lres9 + 4Lres10 +

p2

(p2 −M2
V )

×
(
f2V − 2fV gV + 2

√
2fV αV

)
+

q2

(q2 −M2
A)

(
−f2A − 2

√
2fAαA

)

+
p2q2

(p2 −M2
V )(q2 −M2

A)

×
(
−2fV fA(A(2) −A(3))

) ]
, (6.1)

Gres(p2, q2, (p+ q)2) =
〈ψψ〉0

F 2
0 q

2(p+ q)2

×
[
4Lres9 +

1
(p2 −M2

V )

×
(
−2fV gV p2 + 2

√
2fV αV q

2 − 4
√

2fV βV (p+ q)2
)

+
q2

(q2 −M2
A)

(
−2

√
2fAαA

)

+
(−2fV fA)q2

(p2 −M2
V )(q2 −M2

A)

×
(
A(2)q2 −A(3)p2 + 2B(p+ q)2

) ]
, (6.2)

5 Where Ln =
∑

k+2l=n L(k,l) in terms of the notation intro-
duced in (1.1)

and

Hres
V (p2, q2, (p+ q)2) = − 〈ψψ〉0

F 2
0 (p+ q)2

×
[
−NC

8π2
+

p2

(p2 −M2
V )

(
4
√

2fV hV
)

+
q2

(q2 −M2
V )

(
4
√

2fV hV
)

− p2q2

(p2 −M2
V )(q2 −M2

V )
(
4f2V σV

)]
,

Hres
A (p2, q2, (p+ q)2) = − 〈ψψ〉0

F 2
0 (p+ q)2

×
[
− NC

24π2
+

p2

(p2 −M2
A)

(
4
√

2fAhA
)

+
q2

(q2 −M2
A)

(
4
√

2fAhA
)

− p2q2

(p2 −M2
A)(q2 −M2

A)
(
4f2AσA

)]
. (6.3)

For momentum transfers that are small as compared
to the resonance masses, we can expand the propagators
as sketched in (5.1). Therefore, the contributions from the
resonance Lagrangian start at O(p6) in the chiral expan-
sion. The contributions A(2), A(3), B, and σV , σA originate
from the exchange of two resonances and start to con-
tribute to the low-energy expansion at O(p8) only.

6.1 Even intrinsic parity sector

For the 〈VAP 〉 correlator, we thus find the low-energy
expansions

F res(p2, q2, (p+ q)2) =
〈ψψ〉0

F 2
0 (p+ q)2

×
[
4Lres9 + 4Lres10 − p2

M2
V

(
f2V − 2fV gV + 2

√
2fV αV

)

− q2

M2
A

(
−f2A − 2

√
2fAαA

)
+ O(p4)

]
,

Gres(p2, q2, (p+ q)2) =
〈ψψ〉0

F 2
0 q

2(p+ q)2

[
4Lres9 − 1

M2
V

×
(
−2fV gV p2 + 2

√
2fV αV q

2 − 4
√

2fV βV (p+ q)2
)

− q2

M2
A

(
−2

√
2fAαA

)
+ O(p4)

]
.

Comparison with the expressions of the functions F and
G in ChPT, (2.5), leads to the following determination
of the corresponding low-energy constants (again treating
SU(2) and SU(3) together)

Cres
78 = cres44 =

1
4

1
M2

V

f2V +
1
8

1
M2

V

fV gV +
1

2
√

2
1
M2

V

fV βV

+
1√
2

1
M2

A

fAαA,
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Table 1. Numerical values for the low-energy constants Ci

(in units of 10−4/F 2
0 ) obtained from the LMD estimates in

(5.3) and with the expressions derived from the resonance La-
grangian in (6.4) for two different sets of input values for the
resonance parameters

C78 C82 C87 C88 C89 C90

LMD 1.09 -0.36 0.40 -0.52 1.97 0.0
Set I 1.09 -0.29 0.47 -0.16 2.29 0.33
Set II 1.49 -0.39 0.65 -0.14 3.22 0.51

Cres
82 = cres47 = − 1

16
1
M2

V

f2V − 1
16

1
M2

V

fV gV

− 1
4
√

2
1
M2

V

fV βV − 1
4
√

2
1
M2

A

fAαA,

Cres
87 = cres50 =

1
8

1
M2

V

f2V − 1
8

1
M2

A

f2A,

Cres
88 = cres51 = −1

4
1
M2

V

fV gV − 1√
2

1
M2

V

fV βV ,

Cres
89 = cres52 =

1
2

1
M2

V

f2V +
1
4

1
M2

V

fV gV +
1√
2

1
M2

V

fV αV

+
1√
2

1
M2

A

fAαA,

Cres
90 = cres53 = − 1√

2
1
M2

V

fV βV . (6.4)

There are two main differences with the LMD ansatz of
the previous section: the absence of a term (p+ q)2 in the
low-momentum expansion of F res(p2, q2, (p+q)2), whereas
such a term is present in Gres(p2, q2, (p + q)2) but not in
GLMD(p2, q2, (p+ q)2).

In Table 1 (see e.g. (5.3) for the translation into the
corresponding SU(2) constants ci) we compare the nu-
merical values for the low-energy constants Ci in the LMD
approximation with those obtained from the resonance La-
grangian. As recalled in the introduction and as discussed
in [18], these numbers have to be understood as the values
of the low-energy constants at the scale set by ΛH , which
we identify with the ρ mass MV . We have used the values
F0 = 92.4MeV, MV = 769MeV, and MA = 1230MeV, as
well as the two sets of input values for the resonance pa-
rameters listed in Table 2 as given in [38] (Set I), based on
an ENJL model, and from [46,47] (Set II), extracted from
resonance decays. If we allow for a relative error of about
30% in these values, a typical size for the uncertainty at-
tached to a large-NC estimate, the agreement is rather
good, except for the cases of C88 and C90. We postpone
the discussion of some phenomenological implications of
the differences shown by Table 1 to Sect. 8 below.

The values displayed in the second line of Table 1 were
obtained by taking b = 2M2

A in the LMD ansatz (4.1). If
we had taken b = 4M2

A/3 instead, these values would have
changed within an acceptable range: about 20% for C78
and C82, 16% in the case of C89. The biggest variation
occurs for C88, around 30%, while C87 and C90 remain
unchanged, being insensitive to the value of b. Notice also

Table 2. Values for the parameters in the resonance La-
grangian from [38] (Set I) and from [46,47] (Set II)

fV gV αV βV ≡ fχ fA αA

Set I 0.17 0.08 -0.015 -0.019 0.085 -0.0092
Set II 0.20 0.09 -0.014 -0.025 0.10 -0.0067

that L9 is proportional to b, L9 = F 2
0 b/4M

2
VM

2
A. Chang-

ing b from 2M2
A to 4M2

A/3 decreases the value of L9 by
as much as 33%, while leaving L10 unaffected. This mod-
ifies the O(p4) prediction of the pion charge radius from
〈r2〉πV (b = 2M2

A) = 0.47±0.13 fm2 to 〈r2〉πV (b = 4M2
A/3) =

0.33 ± 0.09 fm2, somewhat lower than the experimental
value 〈r2〉πV = 0.439 ± 0.008 fm2 [48].

At this stage, it is worthwhile to stress that it is not
possible to find a one-to-one correspondence between the
parameter sets of the resonance Lagrangian and of the
LMD approximation to large-NC QCD. This directly re-
flects the differences mentioned above in the low-energy
expansions of the functions FLMD and GLMD on the one
hand, and of F res and Gres on the other hand. Neverthe-
less, some agreement can be obtained by adjusting the res-
onance parameters. When performing such a parametric
comparison, one has to observe that the LMD ansatz al-
ready encodes some additional information. For instance,
the two Weinberg sum rules [40] are fulfilled. In the LMD
approximation they take the form F 2

V = F 2
0 + F 2

A and
F 2
VM

2
V = F 2

AM
2
A and allow one to express FV and FA

through the resonance masses and F0. Furthermore, in
the LMD approximation the identity FVGV = F 2

0 holds.
Finally, one has to make the following identifications be-
tween the parameters in the vector- and the tensor-field
representation for the resonances: fV ≡ FV /MV , gV ≡
GV /MV and fA ≡ FA/MA; see [20].

Comparing the expressions for C90 and C88 in the
LMD approximation, (5.3), with those obtained from the
resonance Lagrangian, (6.4), and using FVGV = F 2

0 we
get

βV = 0.

This removes the largest numerical discrepancies in Ta-
ble 1. Note in particular the huge cancellation in Cres

88 for
the values of βV given in Table 2. On the other hand, using
the Weinberg sum rules and the identifications mentioned
above one notices that

CLMD
87 ≡ Cres

87 .

Thus we are left with the three equations CLMD
i = Cres

i ,
i = 78, 82, 89, for the remaining two unknowns αV and αA.
It turns out that this system of equations is inconsistent.
We can solve, however, for αV , since in the difference C78−
C89 the term with fAαA drops out. From the requirement
CLMD
78 − CLMD

89 = Cres
78 − Cres

89 we obtain

αV = −
√

2
8
F0MV

M3
A

(M2
A +M2

V )√
M2

A −M2
V

= −0.015,



M. Knecht, A. Nyffeler: Resonance estimates of O(p6) low-energy constants 669

in remarkable agreement with the values quoted in [38,
46,47], see Table 2. On the other hand, requiring CLMD

78 +
4CLMD

82 = Cres
78 + 4Cres

82 , leads to

−1
8

F 2
0

M2
VM

2
A

= 0.

This is not compatible with the spontaneous breakdown
of chiral symmetry [1] and the Goldstone theorem, which
requires F0 �= 0.

6.2 Odd intrinsic parity sector

The low-energy expansion of the resonance expressions for
the two correlators 〈V VP 〉 and 〈AAP 〉 gives the following
estimates of the low-energy constants Ai

Ares
2 − 4Ares

3 = −
√

2fV hV
1
M2

V

,

Ares
2 − 2Ares

3 − 4Ares
4 = 0,

Ares
11 +Ares

23 − 4Ares
24 = −

√
2fAhA

1
M2

A

,

3Ares
11 + 4Ares

17 +Ares
23 − 2Ares

24 − 4Ares
25 = 0. (6.5)

In Table 3 we compare the numerical values for the
low-energy constants Ai from the LMD estimates in (5.4)
with those from the resonance Lagrangian, (6.5). We have
introduced the following notations for the combinations of
low-energy constants that appear in 〈V VP 〉 and 〈AAP 〉

AV,p2 = A2 − 4A3,

AV,(p+q)2 = A2 − 2A3 − 4A4,

AA,p2 = A11 +A23 − 4A24,

AA,(p+q)2 = 3A11 + 4A17 +A23 − 2A24 − 4A25. (6.6)

The agreement for the low-energy constants AV,A,p2 is
quite good, whereas the two approaches give different re-
sults for AV,A,(p+q)2 . In the expressions for the low-energy
constants Ai from the resonance Lagrangian (6.5) we used
the ENJL estimates (Set I)

fV hV =
NC

16π2

√
2

8
(1 + gA) = 0.0055,

fAhA =
NC

16π2

√
2

24
gA(1 + gA) = 0.0012, (6.7)

with NC = 3 and gA = 0.65; see [38], in particular the
Erratum. We shall discuss estimates for the low-energy
constants AV,p2 and AV,(p+q)2 beyond the LMD approxi-
mation in Sect. 8.3.

Again, it is impossible to find a one-to-one relation
between the parameters of the resonance Lagrangian and
those that describe the LMD ansatz. The reason lies in the
absence of a term proportional to (p+q)2 in the low-energy
expansions of both Hres

V and Hres
A . We notice nevertheless

that requiring ALMD
V,p2 = Ares

V,p2 and ALMD
A,p2 = Ares

A,p2 leads to

Table 3. Numerical values for the combinations of low-energy
constants Ai defined in (6.6), in units of 10−4/F 2

0 , obtained
from the LMD estimates in (5.4) and from the resonance La-
grangian in (6.5) (Set I)

AV,p2 AV,(p+q)2 AA,p2 AA,(p+q)2

LMD -1.11 -0.26 -0.14 0.040
Set I -1.13 0.0 -0.096 0.0

the relations

fV hV =
1√
2

(
NC

32π2
− F 2

0

8M2
V

)
= 0.0054,

fAhA =
1√
2

(
NC

96π2
− F 2

0

8M2
A

)
= 0.0017,

in rather good agreement with (6.7).
We conclude that, although an adequate adjustment

of the parameters of the resonance Lagrangian of [38] can
bring the determinations of the low-energy constants con-
sidered here to a reasonable numerical agreement, there
is no way to establish an algebraic equivalence between
the two approaches. We have focused here on the La-
grangian of [38] which is the most complete as far as cou-
plings among resonances and to the Goldstone bosons are
concerned. Therefore similar conclusions will also hold for
other existing Lagrangians with resonance fields, see [14–
20] and references therein.

7 QCD short-distance constraints
on the resonance Lagrangian

The discrepancies between the estimates for the low-
energy constants at O(p6) from the LMD ansatz and from
the resonance Lagrangian, as observed in the previous
section, can be traced back to the different high-energy
behaviors of the corresponding Green’s functions in the
two approaches. In fact, as we shall show in this sec-
tion, the Green’s function derived from the resonance La-
grangian are incompatible with the QCD short-distance
constraints.

7.1 Two large momenta

We first consider the limit when the two momenta be-
come simultaneously large, see (3.2)–(3.4). The invariant
function F res from (6.1) behaves as

lim
λ→∞

F res((λp)2, (λq)2, (λp+ λq)2) =
〈ψψ〉0

λ2F 2
0 (p+ q)2

×[4L9 + 4L10 + rFV + rFA + rFVA]

+
〈ψψ〉0
λ4F 2

0

[
(rFV + rFVA)M2

V

p2(p+ q)2
+

(rFA + rFVA)M2
A

q2(p+ q)2

]

+O
(

1
λ6

)
, (7.1)
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where rFV , rFA, and rFVA denote the coefficients of the
terms p2/(p2 − M2

V ), q2/(q2 − M2
A), and (p2q2)/((p2 −

M2
V )(q2−M2

A)) in (6.1), respectively. Agreement with the
OPE result from (3.2) at order 1/λ2 can be achieved if the
constraint

4L9 + 4L10 + f2V − 2fV gV + 2
√

2fV αV − f2A

−2
√

2fAαA − 2fV fA(A(2) −A(3)) = 0 (7.2)

is fulfilled. However, at order 1/λ4, we observe that F res

is not compatible with the OPE result in (3.2), since the
term ∼ 1/(p2q2) is missing in (7.1).

As was shown in [20], requiring agreement of certain
Green’s functions with the short-distance properties of
QCD uniquely determines the low-energy constants Li at
O(p4), even though the contributions of the resonance La-
grangian in the vector-field representation only start at
O(p6).6 In fact, one has to add local terms from L4 to the
resonance Lagrangian in order to obtain the correct short-
distance behavior of these Green’s functions. Analogously,
at O(p6), one might try to add local counterterms from
L6. This is, however, not enough to bring the function
F res in agreement with the OPE. One has as well to add
new terms involving both resonance fields and additional
derivatives. A similar observation, concerning the 〈V V S〉
correlator, was made in [31]: the short-distance behavior of
the three-point function 〈V V S〉 becomes consistent with
the OPE only if a term 〈(V̂µν − (fV /2)f+µν)

2∇2Ŝ〉 is added
to the resonance Lagrangian. In the present case the situ-
ation is more involved, i.e. several new terms would have
to be added. We have not undertaken the task to con-
struct them explicitly. One can show, however, that if one
matches F res with the constraints imposed by the OPE,
the local counterterms at O(p6) have to be adjusted in
such a way that one finally obtains the same values for
the low-energy constants as with the LMD approach. We
caution the reader that the mere fact of using a tensor-field
representation for the resonances does not, by itself, guar-
antee to yield the same estimates for the low-energy con-
stants as with the LMD ansatz. Actually, it was pointed
out in [33] that the resonance Lagrangian with a tensor-
field representation leads to a correlator 〈VAP 〉 [49] which
does not have the correct short-distance properties.

We may perform a similar analysis for Gres from (6.2).
In this case, one may obtain agreement with the QCD
result of (3.3), provided the coupling constants in the res-
onance Lagrangian are adjusted as follows:

fV gVM
2
V +

√
2fV αVM

2
A −

√
2fAαAM

2
V =

F 2
0

2
,

L9 =
1
2
fV gV , A(2) =

√
2
αV

fA
,

6 If a tensor-field formulation is used for the vector and axial-
vector resonances, the contributions from the resonances start
already at order p4 and lead directly to the usual estimates for
the Li. On the other hand, several couplings which appear in
the resonance Lagrangian of [38], like αV , βV or αA, cannot
be written down in the tensor-field representation, at least not
without introducing additional derivatives

A(3) =
√

2
αA

fV
, βV = 0, B = 0. (7.3)

We note, however, that in deriving these constraints we
have not taken into account possible contributions to Gres

from the new local terms that have to be added to the
resonance Lagrangian in order to make F res compatible
with the OPE. The expression for L9 in (7.3) agrees with
[18,20], whereas the relations for A(2) and A(3) agree with
those given in [38].

The short-distance behavior of the functions Hres
V and

Hres
A in (6.3) in the odd intrinsic parity sector is given by

lim
λ→∞

Hres
V ((λp)2, (λq)2, (λp+ λq)2) = − 〈ψψ〉0

λ2F 2
0 (p+ q)2

×
[
−NC

8π2
+ 8

√
2fV hV − 4f2V σV

]
− 〈ψψ〉0M2

V

λ4F 2
0

×
[
4
√

2fV hV − 4f2V σV
p2(p+ q)2

+
4
√

2fV hV − 4f2V σV
q2(p+ q)2

]

+O
(

1
λ6

)
,

lim
λ→∞

Hres
A ((λp)2, (λq)2, (λp+ λq)2) = − 〈ψψ〉0

λ2F 2
0 (p+ q)2

×
[
− NC

24π2
+ 8

√
2fAhA − 4f2AσA

]
− 〈ψψ〉0M2

A

λ4F 2
0

×
[
4
√

2fAhA − 4f2AσA
p2(p+ q)2

+
4
√

2fAhA − 4f2AσA
q2(p+ q)2

]

+O
(

1
λ6

)
. (7.4)

Comparison of these expressions with the OPE result of
(3.4) leads, at order 1/λ2, to the constraints

−NC

8π2
+ 8

√
2fV hV − 4f2V σV = 0,

− NC

24π2
+ 8

√
2fAhA − 4f2AσA = 0. (7.5)

However, at order 1/λ4, we again observe that Hres
V

and Hres
A are not consistent with the OPE result, since

the terms ∼ 1/(p2q2) are missing in (7.4).

7.2 One large momentum

In Sect. 3 we have also derived the short-distance proper-
ties of the Green’s functions 〈VAP 〉, 〈V VP 〉 and 〈AAP 〉
when the relative distance between only two of the cur-
rents becomes small. In certain physical applications only
this limit is relevant and we shall now discuss the corre-
sponding constraints on the parameters in the resonance
Lagrangian. We note, however, that it is not possible to
satisfy simultaneously all the constraints given below.
Moreover, some of these constraints are in contradiction
with the relations derived in the previous section. These
inconsistencies can again be traced back to the fact that
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the Green’s functions derived from the resonance
Lagrangian do not correctly reproduce the QCD short-
distance behavior.

The constraints on the functions F and G from (3.13)
and (3.14), when the space-time arguments of the vector
and axial-vector currents coincide, can be satisfied pro-
vided the resonance parameters obey the relations

A(2) =
√

2
αV

fA
, B = −

√
2
βV
fA
. (7.6)

Furthermore, we recover the usual resonance estimate
L10 = −f2V /4 + f2A/4 and the first Weinberg sum rule
M2

V f
2
V = F 2

0 +M2
Af

2
A. Imposing the relation L9 = fV gV /2,

we furthermore get the relations

A(3) =
√

2
αA

fV
, (7.7)

M2
V f

2
V −M2

V fV gV +
√

2M2
AfV αV +

√
2M2

V fAαA = 0.

The second limit, when the distance between the vec-
tor current and the pseudoscalar density becomes small,
corresponding to the constraints (3.15), can be satisfied
provided

A(3) =
√

2
αA

fV
, βV = 0, B = 0. (7.8)

We also get the result L9 = fV gV /2. Imposing the usual
resonance estimate for L10, we obtain the additional rela-
tions √

2fV αV = −f
2
A

2
, A(2) =

√
2
αV

fA
. (7.9)

Finally, the constraints (3.16), when the arguments of
the axial-vector current and the pseudoscalar density co-
incide, lead again to the relations (7.6). Using in addition
the usual resonance estimates for L9 and L10, we obtain

A(3) =
√

2
αA

fV
, fV gV − f2V

2
−

√
2fAαA =

F 2
0

2M2
V

. (7.10)

We note that we recover in the first case, corresponding
to (3.13) and (3.14), all the constraints from the leading
terms in the expansion in 1/λ, when all momenta in F and
G become large. In the latter two cases we get, however,
only a subset of these relations.

Equations (7.6)–(7.10) arising from the three different
limits are perfectly compatible. If however we combine
them with the first relation in (7.3) from the OPE con-
straint when all momenta in G become large, we find a
contradiction.

We now turn to the functions 〈V VP 〉 and 〈AAP 〉. We
first consider the case when the two vector currents are
taken at the same point, which is relevant, for instance,
in the decay P → l+l−, where P = π0, η (see the dis-
cussion in [43]) or when the space-time arguments of the
two axial-vector currents in 〈AAP 〉 coincide. The corre-
sponding constraint (3.17) can be satisfied, provided the
resonance parameters fulfill the relations

√
2fXhX = cX

NC

32π2
− 1

8
F 2
0

M2
X

,

f2XσX = cX
NC

32π2
− 1

4
F 2
0

M2
X

, X = V,A, (7.11)

with cV = 1, cA = 1/3. In the case when the space-time
argument of one of the vector currents and of the pseu-
doscalar density in 〈V VP 〉 coincide, the constraint from
(3.18) can be satisfied, if

√
2fV hV =

NC

32π2
− 1

4
F 2
0

M2
V

, f2V σV =
NC

32π2
− 1

2
F 2
0

M2
V

,

(7.12)
where we have also used the short-distance constraint (3.5)
on ΠV T (p2). The same limit in 〈AAP 〉, see (3.19), yields
the relations

√
2fAhA =

NC

96π2
, f2AσA =

NC

96π2
. (7.13)

We recover in all cases the constraints (7.5) when all mo-
menta in HV,A become large. We note, however, that al-
though one can individually satisfy the constraints from
the OPE, the relations (7.12) and (7.13) are incompatible
with (7.11).

8 Resonance contributions
to pion form factors

In this section, we discuss a few phenomenological appli-
cations of the various ansätze considered previously. The
first two examples, the vector form factor of the pion and
the radiative pion decay, involve the low-energy constants
Ci that were determined in Sect. 5. The third example, the
pion–photon–photon transition form factor, illustrates a
situation where the MHA goes beyond the simplest LMD
approximation.

8.1 Vector form factor of the pion

There are two combinations of renormalized low-energy
constants cri from the chiral Lagrangian L6 that enter in
the vector form factor of the pion; see [50],

rrV 1 = −16cr6 − 4cr35 − 8cr53,
rrV 2 = −4cr51 + 4cr53.

The resonance estimates for rrV 1 and rrV 2 given in [51] read
(recall that fχ ≡ βV )

rr,resV 1 (µ = MV ) =
2
√

2fχfV F 2

M2
V

,

rr,resV 2 (µ = MV ) =
gV fV F

2

M2
V

. (8.1)

Using the resonance estimates for the constants cresi given
in (6.4) we obtain the same result for rr,resV 2 , if we identify
the pion decay constant F with F0.
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With the LMD estimates from (5.3) we get

rr,LMD
V 2 (µ = MV ) =

F 4
0

M4
V

, (8.2)

which agrees with the result given in (8.1), if we use the re-
lation FVGV = F 2

0 which is valid within the LMD ansatz.
From the present analysis, we cannot obtain an estimate
for rrV 1, which describes the quark mass corrections to the
value of the vector form factor at vanishing momentum
transfer, see [51].

8.2 The decay π → eνeγ

The decay π(p) → eνeγ(q) is described by two form factors
V and A. The contribution from L6 to A can be written
as [52,50]

A((p− q)2) = M2
πr

r
A1 + (p · q)rrA2,

with

rrA1 = 48cr6 − 16cr34 + 8cr35 − 8cr44 + 16cr46 − 16cr47 + 8cr50,
rrA2 = 8cr44 − 16cr50 + 4cr51.

With the estimates for the low-energy constants cri ob-
tained from the resonance Lagrangian, (6.4), we obtain

rr,resA2 (µ = MV ) = F 2 2
M2

A

(
f2A + fAαA2

√
2
)

≈ 0.55 · 10−4,

(8.3)
where we used the same values fA = 0.080, αA = −6.66 ·
10−3, as in [52] and F ≈ F0 = 92.4MeV, and MA =
1230MeV.

On the other hand, using the LMD estimates given in
Eqs. (5.3) we obtain

rr,LMD
A2 (µ = MV ) =

F 4
0

M2
VM

2
A

− 2
F 4
0

M4
A

≈ 0.18 · 10−4. (8.4)

The LMD estimate differs by a factor three from the value
given in (8.3). In fact, since we obtain a different relative
sign in our result for rr,resA2 as compared to the expression
given in [52], the LMD estimate is even a factor of five
smaller than the value rr,resA2 (µ = MV ) ≈ 0.89 · 10−4 used
in that paper.

Since the same combination of resonance parameters
that determines rrA2 also enters in the decay amplitude for
a1 → πγ, the LMD ansatz predicts a decay rate more than
an order of magnitude smaller than the usual value [53].
However, the experimental situation concerning this decay
is far from being clear [54], see the remarks following (62)
in [33].

8.3 Pion–photon–photon transition form factor

Up to now, we have shown that a very minimal ansatz al-
lows to take into account the leading asymptotic behaviors

of the three-point functions 〈VAP 〉, 〈V VP 〉 and 〈AAP 〉.
This simple representation would in general certainly not
be sufficient if additional information were added. How-
ever, within the large-NC framework considered here, one
always has the freedom to go beyond the LMD representa-
tion and to add other zero-width resonance states. In this
section, we wish to illustrate this point by considering the
form factor Fπγ∗γ∗(q21 , q

2
2) that describes the transition be-

tween a pion and two (possibly off-shell) photons in the
chiral limit. This form factor is defined as

i
∫

d4xeiq·x〈0|T{jµ(x)jν(0)}|π0(p)〉
= εµναβq

αpβFπγ∗γ∗(q2, (p− q)2) (8.5)

or still

Fπγ∗γ∗(q21 , q
2
2)

= −2
3

F0

〈ψψ〉0
lim

(q1+q2)2→0
(q1 + q2)2HV (q21 , q

2
2 , (q1 + q2)2).

For both photons on-shell, the value of this form factor is
fixed by the Wess–Zumino–Witten anomaly term,

Fπγ∗γ∗(0, 0) = − NC

12π2F0
.

Many studies have been devoted to this form factor in
the past, see [42,55] and references therein. In particular,
its behavior in the limit Q2 → ∞, ω fixed, with −Q2 =
(q21 + q22), ω = (q21 − q22)/(q

2
1 + q22), has been investigated,

with the result

Fπγ∗γ∗(q21 , q
2
2) = −4F0

3
f(ω)
Q2 + O

(
1
Q4

)
, (8.6)

for −1 < ω < 1. The function f(ω) can be expressed in
terms of the pion distribution function ϕπ(u) [42]

f(ω) =
∫ 1

0
du

ϕπ(u)
(1 − u)(1 + ω) + u(1 − ω)

[
1 + O(αs)

]
,

normalized as ∫ 1

0
duϕπ(u) = 1.

This last condition is sufficient in order to study the limit
−q21 = −q22 = Q2/2 → ∞ and leads to the result [56]

Fπγ∗γ∗

(
−Q

2

2
,−Q

2

2

)
= −4F0

3
1
Q2 + O

(
1
Q4

)
.

The function ϕπ(u) is only known asymptotically, and
this asymptotic expression is reliable only for ω not too
large [57], e.g. |ω| < 1/2. The case of one on-shell pho-
ton corresponds to |ω| = 1, so that the coefficient of the
1/Q2 fall-off of the form factor Fπγ∗γ∗(−Q2, 0) is actually
not known. Depending on the assumptions made or the
ansätze considered for ϕπ(u), different results have been
obtained in the literature.
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The LMD ansatz for HV (q21 , q
2
2 , (q1 + q2)2) reproduces

these results for |ω| < 1 with fLMD(ω) = 1/(1 − ω2).
On the other hand, taking q22 = 0 and letting Q2 = −q21
become large, we obtain

FLMD
πγ∗γ∗(−Q2, 0) ∼ const.

In order to recover the 1/Q2 behavior for |ω| = 1, we need
to go beyond the LMD approximation and add a second
vector resonance (adding a pseudoscalar resonance [32]
would not help to improve the situation in the present
case, since the 1/Q2 behavior forces ĥ1 = 0 in the ansatz
for HV , in contradiction with the relation (4.16)). From
(4.9) we obtain

FLMD+V
πγ∗γ∗ (q21 , q

2
2) =

F0
3

{(
q21q

2
2
[
q21 + q22

]
+ h1(q21 + q22)

2

+h2q21q
2
2 + h5(q21 + q22) + h7

)/(
(q21 −M2

V1
)

×(q21 −M2
V2

)(q22 −M2
V1

)(q22 −M2
V2

)
)}
. (8.7)

The behavior of FLMD+V
πγ∗γ∗ (q21 , q

2
2) for Q2 large and ω fixed,

with |ω| < 1, is the same as in the case of FLMD
πγ∗γ∗(q21 , q

2
2).

However, if we now set q22 = 0, we obtain

FLMD+V
πγ∗γ∗ (−Q2, 0)

=
F0
3

1
M2

V1
M2

V2

h1Q
4 − h5Q

2 + h7
(Q2 +M2

V1
)(Q2 +M2

V2
)
. (8.8)

Imposing that this expression exhibits the 1/Q2 behavior
for large Q2 requires that h1 vanishes, which then gives

FLMD+V
πγ∗γ∗ (−Q2, 0) = −2F0

3
1
Q2

h5
2M2

V1
M2

V2

+ O
(

1
Q4

)
.

(8.9)

In the absence of a reliable prediction for the coefficient
that governs the 1/Q2 behavior, this still leaves the pa-
rameter h5 undetermined. Additional information may be
obtained from the fact that the form factor Fπγ∗γ∗(q21 , q

2
2)

can also be related to the decay ρ+ → π+γ, whose ampli-
tude is given by

A(ρ+ → π+γ) =
e

3
lim

q2
1→M2

V

lim
q2
2→0

(q21 −M2
V )

FVMV
Fπγ∗γ∗(q21 , q

2
2).

(8.10)
Note that we obtain the same relation for A(ρ0 → π0γ).
In the latter case, however, ρ−ω mixing would have to be
taken into account for a realistic calculation. Furthermore,
we have defined the coupling FV of the ρ meson to the
vector current by

〈0|V a
µ (0)|ρb(p)〉 = δabFVMV εµ,

where εµ denotes the polarization vector of the ρ meson.
From (8.10) we obtain (see also [32])

−
(

2eFV

MV

) A(ρ+ → π+γ)
A(π0 → γγ)

(8.11)

=
limq2

1→M2
V ,q2

2→0(q21 −M2
V )Fπγ∗γ∗(q21 , q

2
2)

limq2
1→0,q2

2→0(q21 −M2
V )Fπγ∗γ∗(q21 , q

2
2)

= 1 + x.

The observed value Γ = 68 ± 7 keV for the decay width
ρ+ → π+γ [53] yields x = 0.022 ± 0.051 [32]. The LMD
ansatz for Fπγ∗γ∗ leads to xLMD = −(4π2/NC)(F 2

0 /M
2
V )

= −0.19, far from the experimental value [58]. Starting
instead from the form factor FLMD+V

πγ∗γ∗ leads to

(1 + x)LMD+V =
1

(1 −M2
V1
/M2

V2
)

×
(
1 − 4π2

NC

F 2
0

M2
V1

[
M2

V1

M2
V2

h1
M2

V2

+
h5
M4

V2

])
.

Setting h1 = 0 and solving for h5 gives h5 = 6.3±0.9GeV4,
where we have taken MV1 = 769MeV, MV2 = 1465MeV
for the resonance masses and F0 = 92.4MeV.

Actually, the form factor Fπγ∗γ∗(−Q2, 0) has been
measured in the space-like region by the CLEO collabora-
tion, see Table 1 in [59], over a wide range of
Q2, 1.5GeV2 ≤ Q2 ≤ 9GeV2. A fit of the expression
FLMD+V
πγ∗γ∗ (−Q2, 0) with h1 = 0 to these data yields

h5 = 6.93 ± 0.26GeV4, (8.12)

with χ2/dof = 7.00/14 = 0.50. Keeping also h1 as a free
parameter yields instead

h1 = −0.01 ± 0.16GeV2,

h5 = 6.88 ± 0.61GeV4,

with χ2/dof = 6.99/13 = 0.54. The results for h5 from
both fits are compatible with the value extracted above
from the decay ρ+ → π+γ.

Finally, one might ask to which extent the inclusion of
a second vector resonance into the ansatz for HV modifies
the determination of the corresponding combinations of
low-energy constants. The only combination which can be
fixed from the knowledge of Fπγ∗γ∗(−Q2, 0) alone is AV,p2

(see (6.6)),

ALMD+V
V,p2 =

1
8
F 2
0

M4
V1

h5
M4

V2

− NC

32π2
1

M2
V1

(
1 +

M2
V1

M2
V2

)
, (8.13)

since the other combination, ALMD+V
V,(p+q)2 , involves h6. With

the value of h5 obtained in (8.12), we find, in units of
10−4/F 2

0 , A
LMD+V
V,p2 = −1.36, i.e. about 20% away from

our LMD estimate reported in Table 3. The difference is
well within the 30% relative error that we attribute to the
approximations considered there.

Another approach was followed in [32], where an ad-
ditional pseudoscalar resonance π′ was included in the
ansatz for HV that satisfies the OPE constraints (LMD+P,
see (4.15)). As noted above, this ansatz will, however, not
correctly reproduce the 1/Q2 behavior of Fπγ∗γ∗(−Q2, 0)
at large Q2. In this case, AV,p2 = −NC(1 + x)/32π2M2

V
and from (8.11) one obtains the result, again in units of
10−4/F 2

0 , A
LMD+P
V,p2 = −1.40, close to our LMD+V esti-

mate from the fit to the CLEO data. In a similar way, the
low-energy constant AV,(p+q)2 receives within the LMD+P
ansatz an additional contribution proportional to the de-
cay amplitude A(π′ → γγ) [32]. Since this decay has not
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yet been observed experimentally, our LMD estimate for
AV,(p+q)2 from Table 3 is probably not strongly modified
by the addition of a pseudoscalar resonance.

The low-energy constant AV,p2 also describes the con-
tributions from the counterterms at order p6 to the slope
bπ of the form factor at the origin

bπ ≡
(

1
A(π0 → γγ∗(q2))

d
dq2

A(π0 → γγ∗(q2))
)
q2=0

.

At O(p6) this slope also receives contributions from chiral
loops, therefore, bπ = bloopsπ + bCT

π , with bCT
π = −32π2

AV,p2/NC . The Particle Data Group gives the value aπ ≡
M2

π0bπ = 0.032 ± 0.004 [53]. From our LMD+V estimate
above we obtain bCT,LMD+V

π = 1.67GeV−2 or, equiva-
lently, aCT,LMD+V

π = 0.031. To this value, one should add
the contribution from the chiral logarithms, evaluated at
the scale µ ∼ Mρ, aloopsπ ∼ 0.005 [60], which represents a
20% effect. We note that the value for aπ used by the PDG
is essentially the one reported by the CELLO collabora-
tion [61]. In the latter paper a simple VMD-inspired pole
ansatz was fitted with their data for the form factor in
the space-like region for 0.5GeV2 ≤ Q2 ≤ 2.7GeV2, not
taking into account contributions from Goldstone boson
loops at low Q2.

9 Conclusions

In this article we have studied the QCD three-point func-
tions 〈VAP 〉, 〈V VP 〉 and 〈AAP 〉 in the three flavor chiral
limit in order to obtain resonance estimates for some of
the low-energy constants that appear at O(p6) in chiral
perturbation theory in the meson sector (even and odd
intrinsic parity). We have compared the results that have
been obtained in the literature using a Lagrangian that in-
cludes resonance fields [38] with those evaluated within the
framework of an approximation of large-NC QCD com-
bined with information on short-distance properties. In
certain cases, we have found substantially different results
for the estimates of the low-energy constants obtained
with these two methods. We have pointed out that this
is due to the fact that the Green’s functions derived from
the resonance Lagrangian do not correctly reproduce the
QCD short-distance behavior. This defect can be repaired,
but at the expense of introducing, into the resonance La-
grangian, certain local contributions. The difference with
the similar situation at the O(p4) level lies in the fact that
these local contributions cannot be restricted to terms al-
ready present in the O(p6) chiral Lagrangian, but also in-
volve terms with resonance fields and higher order deriva-
tives. This feature, already noticed in a particular case in
[31], seems to be of a general character. A general con-
struction remains to be done, and appears to be a much
more complicated task than at O(p4).

We note that although in general the short-distance
behavior of the Green’s functions derived from the reso-
nance Lagrangian [38] is incompatible with QCD, one can

sometimes reproduce the results from the operator prod-
uct expansion, by adjusting the resonance parameters ac-
cordingly. There are, however, certain cases where this is
not possible. The numerical values for the low-energy con-
stants can then be very different. In particular, whereas
both methods lead to identical estimates for the resonance
contributions at order p6 in the vector form factor of the
pion Fπ

V (q2), our estimate for the resonance contribution
in one of the form factors for the decay π → eνeγ is a
factor of five smaller than the results quoted in [52].

Of course one might argue that the short-distance be-
havior of Green’s functions, i.e. their behavior at very high
energies, is irrelevant for the determination of low-energy
constants in chiral Lagrangians starting from a resonance
Lagrangian that is supposed to be valid only in the inter-
mediate energy region anyway. We think, however, that
taking into account the QCD short-distance constraints
is a good guiding principle to avoid (some of) the ambi-
guities when working with resonance fields, as was shown
at order p4 in [20]. Moreover, in certain cases one needs
also integrals of these Green’s functions, for instance, to
estimate the low-energy constants that appear if virtual
photons [34] or leptons [37] are included in chiral per-
turbation theory, see the discussion in [33,36]. The case
of the counterterms of the effective Lagrangians [62] in
the |∆S| = 1 or |∆S| = 2 sectors of the standard model
presents very similar features [63,64]. In these applications
it is crucial that the Green’s functions respect the short-
distance constraints in order to obtain ultraviolet finite
results or to implement a correct matching between long
and short distances.

Finally, we wish to add a few remarks concerning the
methodology followed in the present study. We shall not
come back on the use of the large-NC framework, which
seems to be unavoidable once correlators of higher rank
than two-point functions need to be considered. Our ap-
proach deviates however from a full large-NC limit of QCD
by at least two aspects. For one thing, we have only im-
posed constraints coming from the leading (for the three-
point functions) and next-to-leading (for the vertex func-
tions) short-distance properties of QCD. We have consid-
ered neither the effects of higher dimension operators in
the Wilson expansions, nor have we included QCD correc-
tions to the short-distance behavior (recall however, that
for the cases treated here, the corresponding Wilson coeffi-
cients had no anomalous dimensions). For the other thing,
we have truncated the mesonic spectrum of large-NC QCD
to the minimal number of resonances necessary in order to
fulfill the short-distance constraints that were considered.
Both approximations are to a large extent interdependent.
It is clear that, say, the simplest LMD ansatz will at some
point fail to reproduce the subleading short-distance be-
havior. On the other hand, the knowledge of the subdom-
inant operators in the OPE, or other constraints, will fix
additional parameters that have to be introduced if one
goes beyond the LMD approximation. In this sense, the
framework within which we have been working is, given
the necessary amount of work, improvable. As an illustra-
tion, we have considered the pion–photon–photon form
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factor Fπγ∗γ∗(−Q2, 0). The experimentally observed [59]
1/Q2 fall-off of the form factor cannot be reproduced with
our LMD ansatz for the invariant function HV . Including
one additional vector resonance, we obtain a representa-
tion for this form factor that fulfills all constraints from
the leading terms in the operator product expansion and
that fits the experimental results successfully if we adjust
some of the unknown parameters that enter in the gener-
alized ansatz for HV . We note that this is not possible if
one includes a pseudoscalar resonance instead. This new
ansatz, with the phenomenologically determined parame-
ters, is furthermore compatible with the observed decay
rate for ρ+ → π+γ. Finally, the estimate for one com-
bination of low-energy constants Ai in the odd-intrinsic
parity sector changes by about 20% with this new ansatz.
This difference is within the 30% relative error that we
attribute to the approximations considered here. The de-
termination of the low-energy constants seems thus to be
stable against the inclusion of higher mass resonances.

It is clear that the three-point functions we have con-
sidered do not, by far, exhaust the whole set of low-energy
constants of the chiral Lagrangian at the O(p6) level.
Other three-point functions, as well as higher correlators,
need to be studied in a similar way for that purpose. Some
of them (in particular, those describing the low-energy
constants related to quark mass corrections) will include
the scalar densities. Recent studies have emphasized that
in the 0++ channel, predictions relying on the large-NC

picture might not be very reliable [65,64], because of the
strong ππ interaction in the S-wave. It has been suggested
that a more appropriate treatment would rather require to
consider the limit where both NC and NF , the number of
light flavors, become large, with a fixed ratio NF /NC [66].
Also, in the case of two- and three-point functions, the
quantum numbers of the resonances that can contribute
in the large-NC limit are entirely fixed by the quantum
numbers of the quark bilinears involved. This is no longer
true for n-point functions with n ≥ 4 [21]. We leave these
and other interesting issues for future work.
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Appendix

A Operator product expansion
for vertex functions

In this appendix we discuss the short-distance behavior of
the vertex functions

(ΓV A)abcµν (q, p) =
∫

d4xeiq·x〈0|T{V a
µ (x)Ab

ν(0)}|πc(p)〉,

(ΓV P )abcµ (q, p) =
∫

d4xeiq·x〈0|T{V a
µ (x)P b(0)}|πc(p)〉,

(ΓV V )abcµν (q, p) =
∫

d4xeiq·x〈0|T{V a
µ (x)V b

ν (0)}|πc(p)〉,

(ΓAA)abcµν (q, p) =
∫

d4xeiq·x〈0|T{Aa
µ(x)A

b
ν(0)}|πc(p)〉.

(A.1)

They are related, according to the LSZ reduction formula,
to the 〈VAP 〉, 〈V VP 〉 and 〈AAP 〉 three-point functions as
follows:

(ΓV A)abcµν (q, p) = i
F0

〈ψψ〉0
fabc

×
[
〈ψψ〉0

(
(2p− q)µ(p− q)ν

(p− q)2
− ηµν

)

+Pµν(q, p− q)F̃(q2, q · p) +Qµν(q, p− q)G̃(q2, q · p)
]
,

F̃(q2, q · p) = lim
p2→0

p2F(q2, (p− q)2, p2),

G̃(q2, q · p) = lim
p2→0

p2G(q2, (p− q)2, p2), (A.2)

and

(ΓV P )abcµ (q, p) =
−1
F0
fabc

×
[
−〈ψψ〉0 (q − 2p)µ

(q − p)2
+ (q2pµ − (q · p)qµ)Ǧ(q2, q · p)

]
,

Ǧ(q2, q · p) = lim
p2→0

p2G(q2, p2, (q − p)2), (A.3)

since the invariant function F(q2, p2, (q − p)2) does not
contain a 1/p2 Goldstone boson pole. Finally,

(ΓV V )abcµν (q, p) = i
F0

〈ψψ〉0
εµναβq

αpβdabcH̃V (q2, q · p),

(ΓAA)abcµν (q, p) = i
F0

〈ψψ〉0
εµναβq

αpβdabcH̃A(q2, q · p),

H̃X(q2, q · p) = lim
p2→0

p2HX(q2, (p− q)2, p2),

X = V,A, (A.4)

with H̃X(q2, q ·p) = H̃X(q2−2q ·p,−q ·p), as a consequence
of (2.4).

For general Dirac matrices Γ1,2 we obtain the OPE

lim
λ→∞

∫
d4xei(λq)·x

×〈0|T
{(

ψ̄Γ1
λa

2
ψ

)
(x)

(
ψ̄Γ2

λb

2
ψ

)
(0)

}
|πc(p)〉

= lim
λ→∞

∫
d4xei(λq)·x(Γ1) β

α

(
λa

2

)
IJ

(Γ2) δ
γ

(
λb

2

)
KL

×
[
iS(x) γ

β δJK〈0| : ψ̄α
I (x)ψδ,L(0) : |πc(p)〉

+iS(−x) α
δ δIL〈0| : ψ̄γ

K(0)ψβ,J(x) : |πc(p)〉
]
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+ · · ·
=

i
λ
(Γ1) β

α

(
λa

2

)
IJ

(Γ2)δγ

(
λb

2

)
KL

×
[(

q/

q2

) γ

β

δJK〈0| : ψ̄α
I (0)ψδ,L(0) : |πc(p)〉

−
(
q/

q2

) α

δ

δIL〈0| : ψ̄γ
K(0)ψβ,J(0) : |πc(p)〉

]

+
1
λ2

(Γ1) β
α

(
λa

2

)
IJ

(Γ2) δ
γ

(
λb

2

)
KL

× ∂

∂qρ

[(
q/

q2

) γ

β

δJK〈0| : (Dρψ̄)αI (0)ψδ,L(0) : |πc(p)〉

−
(
q/

q2

) α

δ

δIL〈0| : ψ̄γ
K(0)(Dρψ)β,J(0) : |πc(p)〉

]

+O
(

1
λ3

)
, (A.5)

up to possible O(αs) corrections. Note that the indices
I, J, . . . label both flavor and color and that in this Ap-
pendix (λa/2)IJ denote the Gell-Mann matrices in flavor
space and the unit matrix in color space, with tr(λaλb) =
2NCδ

ab. From invariance under parity, Lorentz, flavor
SU(3)V and color SU(3)C transformations the matrix el-
ements involved in (A.5) can be expressed as

〈0| : ψ̄α
I (0)ψδ,L(0) : |πc(p)〉

=
∑
d

(
λd

2

)
LI

×
[
(iγ5) α

δ 〈0| :
(
ψ̄iγ5

λd

2
ψ

)
(0) : |πc(p)〉

( −1
2NC

)

+(γσγ5) α
δ 〈0| :

(
ψ̄γσγ5

λd

2
ψ

)
(0) : |πc(p)〉

( −1
2NC

)]
,

〈0| : (Dρψ̄)αI (0)ψδ,L(0) : |πc(p)〉

=
∑
d

(
λd

2

)
LI

×
[
(iγ5) α

δ 〈0| :
(
Dρψ̄iγ5

λd

2
ψ

)
(0) : |πc(p)〉

( −1
2NC

)

+(γσγ5) α
δ 〈0| :

(
Dρψ̄γ

σγ5
λd

2
ψ

)
(0) : |πc(p)〉

( −1
2NC

)

+(γ5σρσ) α
δ 〈0| :

(
Dσψ̄iγ5

λd

2
ψ

)
(0) : |πc(p)〉

( −1
6NC

)]
,

〈0| : ψ̄γ
K(0)(Dρψ)β,J(0) : |πc(p)〉

=
∑
d

(
λd

2

)
JK[

(iγ5)
γ

β 〈0| :
(
ψ̄iγ5

λd

2
Dρψ

)
(0) : |πc(p)〉

( −1
2NC

)

+(γσγ5)
γ

β 〈0| :
(
ψ̄γσγ5

λd

2
Dρψ

)
(0) : |πc(p)〉

( −1
2NC

)

+(γ5σρσ)
γ

β 〈0| :
(
ψ̄iγ5

λd

2
Dσψ

)
(0) : |πc(p)〉

(
1

6NC

)]
.

In the above, we have also made use of the equations of
motion in the chiral limit, �Dψ = 0.

Invariance under space-time translations, parity and
charge conjugation further yields

〈0|
(
Dρψ̄iγ5

λd

2
ψ

)
(0)|πc(p)〉

= 〈0|
(
ψ̄iγ5

λd

2
Dρψ

)
(0)|πc(p)〉 =

i
2
pρ

〈ψψ〉0
F0

δdc,

〈0|
(
Dρψ̄γσγ5

λd

2
ψ

)
(0)|πc(p)〉

= 〈0|
(
ψ̄γσγ5

λd

2
Dρψ

)
(0)|πc(p)〉 =

1
2
pρpσF0δ

dc.

Using these expressions, we deduce from (A.5) the fol-
lowing short-distance behavior of the vertex functions

lim
λ→∞

(ΓV A)abcµν (λq, p)

=
i
λq2

F0f
abc

{
(p · q)ηµν − qµpν − qνpµ +

1
λq2

[
q2pµpν

+(p · q)2ηµν − (p · q)(qµpν + qνpµ)
]}

+ O
(

1
λ3

)
,

lim
λ→∞

(ΓV P )abcµ (λq, p)

=
1
λq2

〈ψψ〉0
F0

fabc
{
qµ +

2
3
(p · q)qµ − q2pµ

λq2

}

+O
(

1
λ3

)
,

lim
λ→∞

(ΓV V )abcµν (λq, p)

= − i
λq2

F0d
abcεµναβq

αpβ
{
1 +

p · q
λq2

}
+ O

(
1
λ3

)
,

lim
λ→∞

(ΓAA)abcµν (λq, p)

= − i
λq2

F0d
abcεµναβq

αpβ
{
1 +

p · q
λq2

}
+ O

(
1
λ3

)
.

(A.6)

The result for ΓV P contradicts the one given in (55) in
[33] where no term of order 1/λ2 appears [67]. Note that
this term is transverse, in accordance with the chiral Ward
identities from (2.2). On the other hand, our result for the
short-distance expansion of ΓV A agrees with the one given
in (58) in [33].

B The resonance Lagrangian

The resonance Lagrangian from [38], which generalizes the
one already given in [20], reads (omitting terms including
a scalar resonance)
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Lres = LV + LA + L(2)
V V + L(2)

AA + L(2)
V A,

LV = −1
4

〈
V̂µν V̂

µν − 2M2
V V̂µV̂

µ
〉

− 1
2
√

2

(
fV

〈
V̂µνf

µν
+

〉
+ igV

〈
V̂µν [uµ, uν ]

〉)
+iαV

〈
V̂µ

[
uν , f

µν
−

]〉
+ βV

〈
V̂µ [uµ, χ−]

〉
+iθV εµναβ

〈
V̂ µuνuαuβ

〉
+ hV εµναβ

〈
V̂ µ

{
uν , fαβ+

}〉
,

LA = −1
4

〈
ÂµνÂ

µν − 2M2
AÂµÂ

µ
〉

− 1
2
√

2
fA

〈
Âµνf

µν
−

〉
+ iαA

〈
Âµ

[
uν , f

µν
+

]〉
+γ(1)A

〈
Âµuνu

µuν
〉

+ γ
(2)
A

〈
Âµ {uµ, uνuν}

〉
+γ(3)A

〈
Âµuν

〉
〈uµuν〉 + γ

(4)
A

〈
Âµu

µ
〉

〈uνuν〉

+hAεµναβ
〈
Âµ

{
uν , fαβ−

}〉
,

L(2)
V V =

1
2
δ
(1)
V

〈
V̂µV̂

µuνu
ν
〉

+
1
2
δ
(2)
V

〈
V̂µuν V̂

µuν
〉

+
1
2
δ
(3)
V

〈
V̂µV̂νu

µuν
〉

+
1
2
δ
(4)
V

〈
V̂µV̂νu

νuµ
〉

+
1
2
δ
(5)
V

〈
V̂µu

µV̂νu
ν + V̂µuν V̂

νuµ
〉

+
1
2
κV

〈
V̂µV̂

µχ+

〉
+

1
2
iφV

〈
V̂µ

[
V̂ν , f

µν
+

]〉
+

1
2
σV εµναβ

〈
V̂ µ

{
uν , V̂ αβ

}〉
,

L(2)
AA =

1
2
δ
(1)
A

〈
ÂµÂ

µuνu
ν
〉

+
1
2
δ
(2)
A

〈
ÂµuνÂ

µuν
〉

+
1
2
δ
(3)
A

〈
ÂµÂνu

µuν
〉

+
1
2
δ
(4)
A

〈
ÂµÂνu

νuµ
〉

+
1
2
δ
(5)
A

〈
Âµu

µÂνu
ν + ÂµuνÂ

νuµ
〉

+
1
2
κA

〈
ÂµÂ

µχ+

〉
+

1
2
iφA

〈
Âµ

[
Âν , f

µν
+

]〉
+

1
2
σAεµναβ

〈
Âµ

{
uν , Âαβ

}〉
,

L(2)
V A = iA(1)

〈
V̂µ

[
Âν , f

µν
−

]〉
+ iA(2)

〈
V̂µ

[
uν , Â

µν
]〉

+iA(3)
〈
Âµ

[
uν , V̂

µν
]〉

+B
〈
V̂µ

[
Âµ, χ−

]〉
+Hεµναβ

〈
V̂ µ

{
Âν , fαβ+

}〉
+iZ(1)εµναβ

〈
uµuν

{
Âα, V̂ β

}〉
+iZ(2)εµναβ

〈
uµÂνuαV̂ β

〉
, (B.1)

where the vector fields describing the vector and axial-
vector resonances have been denoted by V̂µ and Âµ, re-
spectively. In (B.1) we employed the usual notations [18,
20]

R̂µ =
1√
2

8∑
a=1

R̂a
µλ

a, R̂ = V̂ , Â,

R̂µν = ∇µR̂ν − ∇νR̂µ,

∇µR̂ = ∂µR̂+
[
Γµ, R̂

]
,

Γµ =
1
2

{
u† [∂µ − i(vµ + aµ)]u

+ u [∂µ − i(vµ − aµ)]u†} ,
fµν± = uFµν

L u† ± u†Fµν
R u,

uµ = i
{
u† [∂µ − i(vµ + aµ)]u

− u [∂µ − i(vµ − aµ)]u†} ≡ iu†DµUu
† = u†

µ,

χ± = u†χu† ± uχ†u,

where the symbol 〈M〉 stands for the trace of the 3 × 3
matrix M . The field u is the square root of the Goldstone
boson field, U = u2, whereas vµ, aµ and χ denote the
external sources.

Note that in the case of bilinear interactions of V̂µ and
Âµ, only terms with at most one trace in flavor space are
included in Lres, which is compatible with the large-NC

suppression of Zweig rule violating contributions. Further-
more, no pseudoscalar resonances have been incorporated
in the resonance Lagrangian in [38]. As stressed in [20],
terms from L2 + L4 involving Goldstone bosons have to
be added to the resonance Lagrangian as well in order to
correctly reproduce the QCD short-distance behavior of
certain Green’s functions.
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